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A method of solving the canonical Hamilton equations, based on a search for invariant manifolds, which are uniquely projected 
onto position space, is proposed. These manifolds are specified by covector fields, which satisfy a system of first-order partial 
differential equations, similar in their properties to Lamb's equations in the dynamics of an ideal fluid. If the complete integral 
of Lamb's equations is lcaown, then, with certain additional assumptions, one can integrate the initial Hamilton equations explicitly. 
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1. I N T R O D U C T I O N  

The  H a m i l t o n - J a c o b i  m e t h o d  reduces the  p rob l em of  solving the canonical  equat ions  

x ; = ~ H l O y i ,  y i = - O H l O x i ,  l<~i<~n; H = H ( x , y , t )  

to an investigation of  the f irst-order par t ia l  differential  equa t ion  

(1.1) 

OS I Ot + H ( x  I ..... x, ,OS / bxj ... . .  OS / bx. ,  t) = 0 (1.2) 

I f  S(x, t) is a par t icular  solution of  Eq.  (1.2), the  relat ion 

y = OSlOx (1.3) 

gives an n-d imensional  invariant  mani fo ld  E of  system (1.1). Suppose  S(x, t, c), c = ( c a , . . . ,  Cn) is the 
comple te  integral  of  Eq. (1.2): for  all c this funct ion satisfies Eq. (1.2) and 

det~O2S I axiac j II 0 (1.4) 

In this case the p]hase space of  system (1.1) is stratified on invariant  manifolds  

Zc = Ix, y: y = OSlOx} 

where,  by Jacobi ' s  t]heorem, the following relat ions hold 

aS/Oc=--a, a = (at ..... an) (1.5) 

F rom (1.5) one  can obtain  the var iable  x as a funct ion of  t, and 2n arbi trary constants  a and c. The  
variables  y are  then  found  f rom (1.3). 

By condi t ion (1.4), using the implicit funct ion theo rem,  f rom n equat ions  (1.3) one  can find (at  least 
locally) Cl, • • • ,  cn as functions of  x, y, t. These  funct ions are  independen t  integrals o f  Eqs (1.1), which 
are  in the involution: {ci, cj} = 0. Conversely,  if we know the n independen t  involutive integrals o f  
Hami l ton ' s  equat ions  (1.1), we can explicitly construct  the comple te  integral  o f  Eq. (1.2). Note  also 
that  Eqs  (1.3) and (1.5) specify the canonical  t r ans fo rmat ion  x, y ---> c, a with the genera t ing  function 
S. 

A m o r e  general  approach  to investigating Hami l t on ' s  equat ions  (1.1) consists o f  replacing Eq. (1.2) 
by the system of  firs~L-order partial  differential  equat ions  
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• 3u/~)t + (rot u) v = -  3h/Ox (1.6) 

where u = (ul . . . . .  un)are  functions o f x  and t (the convector field in position space {x}), rot u = 
Ou/ar - (Ou/Ox) T, Ou/Ox = II Ou~tOx~ It is an n x n skew-symmetric matrix, and v = (Vl, • • • ,  vn) r, vi = 
on/~yi ly = u is a vector field in {x) and h(x, t) = H(x,  u(x, t), t). 

When n = 3 the rot of  the field u corresponds uniquely to the matrix rot u, so that (rot u) v = (rot 
u) x v. Equation (1.6) has the form of the well-known Lamb equation in the dynamics of an ideal fluid, 
and hence, in general, will also be called its Lamb's  equation. 

In order,to understand the structure of Eqs (1.6) better, we will write them for systems with a "natural" 
Hamiltonian 

1 ~. gij (x , t )  YiYj + V(x, t) ,  x = (x t ..... x~) 
H = 2  i.j=l 

Lamb's equations have the following explicit form 

Oui + ~, gjk uk = I 2, g j k u j u k l - ~ " ,  i=1  ..... n 
3t j,k=l OXj ~x i )  2 3x i \j,k=l ) o.ti 

Equation (1.6) means that 

X = {y = u(x,  t)} 

is an n-dimensional invariant surface of system (1.1) [1]. I fu  = OS/Ox, we have rot u = 0, and from (1.6) 
we obtain 

O(OS/3t + h )/Ox = 0 

Consequent~ 

OS[Ot + H(x, ~)S/~)x, t) = g(t) 

After making the replacement 

S ~ S - ~ g(t) dr 

the function g is equal to zero. The derivation of (1.2) from (1.6) for invariant surfaces (1.3) is identical 
with the derivation of the Lagrange--Cauchy integral for potential flows of an ideal fluid. Hence, the 
invariant surfaces E will be called potential (vortex) surfaces if rot u = 0 (rot u ,  0). 

Equations (1.6) for Hamiltonian systems appeared for the first time, obviously, in the variational calculus as the 
conditions for extremal fields to match (see [2]). The extension of Lamb's equations to non-Hamiltonian systems 
can be found in [3]. The relation between Eq. (1.6) and the ideas from hydrodynamics can be found in [1, 4]. The 
use of Lamb's equations to integrate the equations of analytical mechanics is described in [3, 5], although it is families 
of potential invariant surfaces that are mainly considered there. 

2. T H E  V O R T E X  M E T H O D  OF I N T E G R A T I N G  H A M I L T O N ' S  
E Q U A T I O N S  

Suppose u(x, t, c) is a family of solutions of Eqs (1.6), which depends on n parameters c = (Cl, • • •, 
cn). We will call this family the complete integral of Lamb's equation (1.6), if 

detll Ou/0c II • 0 (2.1) 

Theorem 1. Suppose we know the complete integral u(x, t, c) of Eq. (1.6), where: 
1. rank (rot u) = 2k. 
2. k integrals FI (x,y, t) . . . .  , Fk(X,y, t) of Hamilton's equations (1.1) exist such that {Fk, F i} = 0 (for 

all 1 <~ i , j  <~ n) and for all values of c the field u(x, t, c) satisfies each of the k equations 
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aula t+(ro tu)v  i =-a f i  lax, 1 <~ i<~ k 

o i ffi aF//aylyfu, f . (x , t ,c)  = Fi(x,u(x,t,c),t ) 

3.fl  . . . .  ,fk are independent as functions ofx. 
Then the initial Hamilton equations (1.1) can be integrated in quadratures. 

(2.2) 

Note. Since the matrix rot u is skew-symmetric, its rank is an even number. 

We will put out a number of corollaries of Theorem 1. We will first consider the case when u is a 
potential solution of Lamb's equation: u = S~(x, t, c). Then rot u = 0 and consequently k = 0. In this 
case the condition for (2.1) to be non-degenerate becomes conditions (1.4), while Theorem 1 reduces 
to Jacobi's theorem on the complete integral of Eq. (1.2). 

We will now consider the simplest of the vortex solutions of Eq. (1.6), when rank (rot u) = 2 and 
consequently k = 1. 

If system (1.1) is autonomous (the Hamiltonian H is dearly independent oft), we can take the function 
H as the integral F from Section 2. The field u then obviously satisfies Eq. (2.2), since this equation is 
identical with the :initial Lamb equation (1.6). Condition 3 of Theorem 1 reduces to the condition 

dxH(x, u(x, t, c)) ~ 0 (2.3) 

We have therefore established the following corollary. 

Corollary. If we know the complete integral u(x, t, c) of Eq. (1.6), defined by the Hamiltonian H(x, 
y), where rank (rot u) = 2 and condition (2.4) is satisfied, Hamilton's equations (1.1) are integrable in 
quadratures. 

This assertion is particularly effective when n = 3: the rank of the matrix rot u can be equal to either 
zero or two. 

Finally, we will ~0nsider another limiting case, when the matrix of the rot u has the maximum possible 
rank, equal to n. Then n = 2k, and for the complete integration of Hamilton's equations we must know 
n/2 involutive integrals which satisfy conditions 2 and 3 of Theorem 1. We can give these conditions a 
clear interpretation in the autonomous case when the functions H = F1 . . . .  , F~/2 and the field u are 
explicitly independent of t. Then Lamb's equation (1.6) 

(rot u) x" = - ah / ax (2.4) 

will be a Hamiltonian system in 2k-dimensional phase space {x} with the simplectic structure 

CO ffi dCudx) ffi ~, (au i / axj - auj /ax i) dx i Adxj  

and Hamiltonian h. By conditions 2 and 3 the functions h = f l  . . . . .  fk are independent integrals of Eq. 
(2.5). Since {Fi, Fj} = 0, the functions f l  . . . . .  fk are also involutive with respect to the simplectic structure 
co. By Liouville's theorem, Eqs (2.5) are integrable in quadratures. The momentay  are found from the 
relations y = u(x, t, c). 

Theorem 1 is proved in Sections 3 and 4. Equations (1.1) are first reduced to an autonomous system 
in (2n + 2)-dimensional phase space, and the autonomous version of Theorem l is then proved. 

3. R E D U C T I O N  TO THE A U T O N O M O U S  CASE 

It is well known that the non-autonomous Hamiltonian system (1.1) with n degrees of freedom can be 
represented in the form of an autonomous system with n + 1 degrees of freedom, by adding the conjugate 
variables xn+a = t, Yn+l to the canonical variables x, y and introducing the new Hamiltonian 

H* =Yn+l + H(x,y,  xn+I) (3.1) 

Equations (1.1) ,Lre equivalent to the system 

x '=aH" /ay, y ' = - a H "  /ax 
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The other two equations have the form 

x;z+! = OH* I Oyn+ ! = 1, Y'n+l = - OH* I ~xn+ ! = - OH I Ot 

The first of these is a trivial identity, while the second (taking the integral H* = const into account) 
represents a theorem on the change in the energy H for system (1.1). Suppose system (1.1) has an n- 
dimensional invariant manifoldy = u(x, t). Then the relations 

y = u(x, x.. I ), Yn+I = un*l (x, x.+ I ) = - H(x, u, xn+ l ) 

specify an (n + 1)-dimensional invariant manifold for a system with Hamiltonian (3.1). 
We will put 

x*=(x, xn+l), u*=(u, un+l), Y*=(Y, Yn+I) 

rot u* = Ou" / 0x* - (0u* / 0x ' ) r  

• . . r = H ' I .  = 0  u = ( x , x n . l ) v = = = ( u , 1 )  r,  h* 

It can be shown that the autonomous Lamb equations for a Hamiltonian system with Hamilton 
function H* 

(rot u*)u * = -Oh* IOx* = 0 (3.2) 

are equivalent to Eqs (1.6). 
The complete integral u(x, t, c) of Lamb's equations (1.6) can be extended to the complete integral 

of  Eqs (3.2) by assuming 

Y, . I  = - H ( x , u ( x , x n * l , c ) , x n * l ) + c n * t ,  c,.1 =c°nst  

In fact 

detl0u'/0c' =detl0u/0cll*0, :=(c, . . . . .  

Thus, we can confine ourselves to considering autonomous systems (1.1) with Hamiltonian 
H(x, y) and steady convector fields u(x). These objects are related by Eqs (2.5), in which h(x) = 
H(x, =(x)). 

Theorem 2. Suppose we know an n-parametric solution u(x, c) of Eqs (2.5), which satisfy condition 
(2.1) and the following conditions: 

1. rank (rot u) = 2k 
2. there are k involute integrals Fl(x, y ) , . . . ,  Fk(x, y )  of autonomous system (1.1) such that for all 

values of c 

(rotu)u i =-OJ~ /Ox, 1<~ i<~ k 

vi =0F~/0yI:.=,, f/(x,c)= Fi(x,u(x,c)) 

3. the functions f l  . . . .  , fk are independent. 
Then system (1.1) can be integrated using quadratures. 
This assertion is a consequence of Theorem 1 in the special case when the functions H, F1, • • . ,  FK 

and the field u are explicitly independent of t. On the other hand, Theorem 1 is derived from Theorem 
2 using the extension of  phase space described above. The functions Fl(x,  y,  x ,÷l ) ,  • • • ,  Fk(X, y,  x ,÷ l )  
play the role of k integrals of condition 2 of Theorem 2. 

A unique interesting point which is required in the proof is equality of the ranks of the skew-symmetric 
matricesA = rot u and B = rot u*. We recall that the rank of a matrix is equal to the codimension of 
its zero-space, consisting of the eigenvectors with zero eigenvalue. These vectors are also called vortex 
vectors. 

Suppose 
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~'J =(~11 ..... ~'ln) r . . . . .  ~'m =(~'ml . . . . .  ~'mn) r (3.3) 

are linearly independent vortex vectors of the matrix A and m = n - rank A. It is clear that the vectors 

~.i = (~,it . . . . .  ~,in,O) r,  1 ~ i <~ m (3.4) 

will be linearly independent vortex vectors of the matrix B. It remains to note that, according to (3.2), 
B has one other vortex vector v* = ( v l , . . . ,  vn, 1) r # 0, linearly independent with vectors (3.4). 

The vortex vectors (3.3) of the matrix rot u depend on the point x, and their linear combinations 
generate an m-dimensional distribution II(x). It turns out [4] that this distribution is integrable: the n- 
dimensional space of positions {x} is stratified into m-dimensional surfaces, the tangential planes of 
which coincide with I-l(x) at the point x. Consequently, the local coordinates Xl,. • •, x~ can be chosen 
so that the integral surfaces of the distribution I-I (the vortex mani fo lds)  are specified by the equations 

X I ---- Ot I , . . . .  X2k ---- 0 t 2 k ,  0 [  = const, 2k = n - m 

We can take as the vortex vectors (3.3) 

~,1 = ( 0  ..... 0 , 1 , 0  ..... 0)  r, .... ~,m = ( 0  . . . . .  0 . . . . .  1) r 

Since (rot u) ~ = 0 ( 1 ~< i ~< m ), we have ~gui/Ox j = Ou/Ox i for all i = 1 . . . .  , n and j = n - m + 1 . . . .  , n. 
In particular 

Out, I Oxj = Ouj / Oxt,, OUq I Oxj = Ouj / OXq, 1 ~ p, q <~ 2k  

Consequent~ 

(~ [ ~Xj )(OUp / OXq -- ~Uq / OXp ) ---- 0 

Hence,  the matrix rot u has the following form: its last n - 2k columns and n - 2k rows are zero, 
while the remaining elements form a skew-symmetric 2k x 2k-matrix 

( r o t  U). = ~Oup I OXq - OUq ] ~Xp ~; . p ,  q ~ 2 k  

the elements of which are independent ofx2~+l, . .  • ,  x,,. 
It has been proved [4] that the function h is constant on vortex manifolds. So in these variables it 

depends only on xl ...... , x2k. Hence, Eq. (2.4) reduces to the equation 

(rot u). x. = - Oh / 3x., x. = (x I ..... x2k) (3.5) 

with non-degenerate matrix (rot u). Since the equations from condition 2 of  Theorem 2 are identical 
in form with (2.4), the functions f l , . . .  ,f~ are also constant on vortex manifolds and are independent 
of x2,+1,. . . ,xn. These functions comprise a complete involute set of independent integrals of Hamilton's 
equations (3.5), and hence Liouville's theorem of complete integrability applies. 

It was proved in [1] that the phase flux of  system X = v(x) converts vortex manifolds. Consequently, 
the components v2g+l . . . .  , v n of the field v are independent of the variables x2k+l . . . . .  x~, and these 
variables can be found as functions of t by simple quadratures. 

Elimination of the variables X2k+ 1 . . . . .  x~ indicates factorization on the space of positions (x} with 
respect to the manifolds: the points x lying on one vortex manifold are identified. From this point of 
view, system (3.5) is a factor-system (2.5) for this equivalence ratio. Hence, the problem of integrating 
system (1.1) rests on the problem of  constructing a family of vortex manifolds. 

4. P R O O F  OF T H E O R E M  2 

Consider the family of surfaces of compatible levels of the functions j~ 

M~ -k = {x: f l (x)  = I$1 ..... f k ( x )  = 13k}, 13 = const 
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Suppose V1, • • •, Vk are Hamiltonians of vector fields in 2n-dimensional phase space of the variables 
x andy,  generated by the Hamiltonians F1,.  • . ,  Fk. Since {Fi, Fj} = 0, these fields commute pairwise: 
[V/, Vj] = 0. By condition 2, the fields V/touch the n-dimensional surfaces ~ = {x,y: y = u} and hence 
the projections v l , . . . ,  vk of these fields are correctly defined in the configuration space {x}. Since the 
fields V/commute pairwise, we have [vi, vj] = O. 

Since {Fi, Fj} = 0, each function Fi is an integral of the vector field Vj: Vj(Fi) = 0. Consequent- 
ly, v j~)  = 0 for all i, j = 1 . . . .  , k. This indicates that the fields vl . . . . .  v k touch each surface M ~ .  . 

On the other hand, there are independent vortex vector fields Wl, • • •, w~-2k which also touch M n-'. 
In fact, by (3.4), wj(fi) = 0. Further, the vectors 

i /I  . . . . .  O k ,  w I ..... Wn_2k (4.1) 

are linearly independent. Otherwise 

~ ' P  i + E~tjwj = 0 (4.2) 

with certain k/and ~,  where E I 2q I ~ O. Multiplying (4.2) on the left by rot u and using condition 2, 
we obtain 

Y&i (rot u)v i = - ~ i ~ f i  I ~x = 0 

However, by condition 3 of the theorem, the functions f l  . . . . .  fk are independent. Consequently, all 
k / =  0. We have obtained a contradiction. Note that the number of independent tangential fields (4.1) 
is identical with the dimension of the manifold M ~-k. 

We will now obtain the (n - 2k)-dimensional vortex manifolds rot u, or more correctly, the intersection 
of these manifolds with the (n - k)-dimensional surfaces M "-k. They are k-dimensional and hence are 
specified by )k/n-c' equations 

tP l (X)  = ) '  1 . . . . .  ~ k ( X )  = ) ' k ,  x E M  n-k 

By the definition of vortex manifolds, the functions 9/satisfy the equations 

wl(q~i) . . . .  = wn_2k(9i) = 0, 1 ~< i <~ k (4.3) 

We will seek these from the additional conditions 

v y (~i) = 8ji, 1 ~ j ~ k (4.4) 

where 6ii is the Kronecker delta. 
It is t~rst necessary to show that the systems of first-order partial differential equations (4.3) and 

(4.4) have solutions. In fact, [vi, vj] = 0, and it can be shown that the commutators can be expressed 
linearly in terms of the vortex vectors w [4]. Under these conditions the solvability of system (4.3)--(4.4) 
follows from the weB-known results of the theory of solvable algebras of vector fields (see, for example, 
[61). 

Since the vector fields (4.1) are independent, from (4.3) and (4.4) we can uniquely obtain (using only 
algebraic operations) the partial derivatives of the function ~i with respect to local coordinates on --k 
M ~ . It remains to use well-known quadratures, which recover from the function from its derivatives. 
The theorem is proved. 

5. THE R E L A T I O N  TO THE T H E O R Y  OF 
N O N - C O M M U T A T I V E  I N T E G R A T I O N  

Suppose u(x, t, c) is the complete integral of Lamb's equations (1.6). Since condition (2.1) is satisfied, 
using the implicit function theorem the system of equations 

Yi =Ui(X, t ,  Cl . . . . .  Cn), 1<~ i<~ n (5.1) 

can be solved (at least locally) for the parameters c 
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c I = F k + l ( x , y , t )  . . . . .  c ,  = Fn+k(x ,y , t )  (5.2) 

In view of the invariance of the surfaces (5.1) these functions are integrals of Hamilton's equations 
(1.1) [1]. By condition 3 of  Theorem 1, the functions F 1 , . . . ,  Fk . . . .  , F ,+k  are independent. By condition 
2, the first k functions commute with all the remaining ones. Consequently, the rank r of  the matrix of  
the Poisson brackets 

IllFi, Fj}ll, l ~ i , j  ~ n + k (5.3) 

is identical with the rank of the matrix of the Poisson brackets of functions (5.2). It was shown in [7] 
that this number is identical with the rank of  the rot u, i.e. it is equal to 2k. 

Thus, the number m = n + k of known integrals of Hamilton's equations (1.1) is linked with the 
rank r of matrix (5.3) by the relation 

2m = 2n + r (5.4) 

which is known as the condition of non-commuta t i ve  integrability of system ( 1.1 ) [8]. When r = 0, condition 
(5.4) reduces to the condition of complete integrability of Hamilton's equations with n degrees of 
freedom. 

Note that in the theory of non-commutative integration autonomous systems and closed sets of  
integrals are usually considered: their Poisson brackets {Fi, F:} are functions of Fs. With these 
assumptions it wa,~ proved in [9] that Hamilton's equations, which satisfy condition (5.4), are integrable 
in quadratures. 

T h e o r e m  3. We will assume that Hamilton's equations (1.1) have n + k independent integrals 

F l ( x , y , t )  . . . . .  Fn+k(x ,y , t )  (5.5) 

where the first n -- k of these are in the involution with all the functions (5.5). Then Eqs (1.1) can be 
integrated in quadratures. 

When k = 0 we obtain Liouville's theorem on the complete integrability of Hamiltonian systems. 
We will consider the autonomous case and assume that the surfaces of  the common levels of integrals 
(5.5) are compact  It was proved in [10] that the coupled components of these surfaces will be (n - k)- 
dimensional tori with conditionally periodic motions, and in the neighbourhood of these toil one can 
introduce generalized action-angle variables. Note that in the assumptions of  Theorem 3 the rank of  
matrix (5.3) is equal to 2k. Consequently, condition (5.4) is satisfied, but it is not assumed here that 
the set of integrals (5.5) is closed. 

To prove Theorem 3 we will consider the algebraic system of equations 

Fk+l(x,y,t)= q ..... Fn+k(x,y,t)=c . (5.6) 

and we will additionally assume that 

~(Fk÷l ..... F"÷k ) ~ 0 (5.7) 
b(yl ..... Y, ) 

Then we can solve system (5.6) for the canonical momenta: y = u(x, t, c). Since for all values of c 
Eqs (5.6) specify the invariant surface of system (1.1), the field u satisfies Lamb's equation (1.6). 
Since the functions (5.6) are independent and condition (5.7) is satisfied, the family of solutions 
u(x, t, c) satisfies condition (2.1). Consequently, this is a complete integral of Lamb's equation. The 
rank of matrix (5.:3) is identical [7] with the rank of the matrix rot u. Hence, condition I of Theorem 
I is satisfied. Sincx" n - k I> k, the first k functions of the set (5.5) commute with all the functions (5.6). 
Hence, condition :2 of Theorem 1 is satisfied. Finally, condition 3 follows from the assumption that the 
set of functions (5.5) is independent. Hence, the integrability of Hamilton's equations (1.1) follows from 
Theorem I. 

If assumption (5.7) is not satisfied, the variables Yl, • • •, Y, must be replaced by other canonical 
coordinates. All the discussion remains the same apart from Lamb's equations that will have a somewhat 
different form. 
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6. A P P L I C A T I O N  TO THE D Y N A M I C S  OF A V A R I A B L E  BODY 

As an example we will consider Liouville's problem [11] of the inertial rotation of a variable body: 
due to internal forces its particles are displaced with respect to one an6ther. Euler's dynamic equations 
have the form 

K'=[K,o] ,  K = I o + ~ ,  (6.1) 

where co is the angular velocity of the body about its principal axes of inertia, I = diag(I1, I2,/3) is the 
inertia matrix, and ~. = (~,a, kz, Z.3) is the gyroscopic moment. We will assume that Ii and k/are known 
functions of time. In this case Eqs (6.1) will be closed. 

Note. Other formulations of the problem are possible in the dynamics of a variable body. For example, 
Zeiliger and Chetayev [12] considered a similarly variable body and for the closure of system (6.1) they 
added an equation for the rate of "radiant" expansion. 

Combining Poisson's equations for the unit fixed vectors Ix, 13, ~' 

Ix'=[o~,oJl, l~'=I[3,co], T=[~ ' ,~ ]  (6.2) 

with (6.1) we obtain a complete system for determining the orientation of the principal axes of inertia 
of the body. Equations (6.1) and (6.2) admit of three integrals 

(K, ix) = ¢1,  (K, I$) = c2, (K, ~') = c3 (6.3) 

A consequence of these is the integral of the momentum (K, h o = k z of Euler's equations (6.1). 
We will seek three-dimensional invariant surfaces, which are uniquely projected onto configuration 

space--the SO(3) group. This means that the moment of momentum K must be sought in the form of 
a function of a,  13, ~' and the variable t. Then from (6.1) and (6.2) we obtain a vector partial differential 
equation 

~K ~K 3K bK 
a--7 + t ,,oJ +-b-ff tl , 01 t ,,ol = tK,,0j (6.4) 

Here we must substitute I - I ( K -  ~,) instead of co. This equation is, of course, Lamb's equation (1.6), 
except that it is not represented in canonical variables. Changing from (1.6) to (6.4) is completely 
analogous to changing from Hamilton's equations to the Poincarg-Chetayev equations in Lie algebras. 

By (6.3), one of the complete solutions of Lamb's equation (6.4) will be a function o f K  = c #  + c213 
+ c3"/. It can be shown that the condition for (2.1) to be non-degenerate is satisfied and the rank of the 
matrix of the rot is equal to two, if the inertia operator I is not spherical. 

We will assume that Eqs (6.1) have an integral F(K, t) independent of the integral of the momentum 
K 2. Then Eqs (6.1)-(6.2) can be integrated in quadratures. This fact can be derived from Theorem 1. 

In fact, here k = 1 and the Poincar6-Chetayev equation 

K" = [K, OF/OK] (6.5) 

corresponds to the function F, to which we must add Poisson's equation (6.2). Clearly each surface (6.3) will be 
invariant for Eqs (6.5) and (6.2). Hence, condition 2 of Theorem 1 is satisfied. Condition 3 follows from the 

2 assumption that the functions F and K are independent. 

Note. The result that Eqs (6.1) and (6.2) are integrable in quadratures also follows from Theorem 3: the required 
set of integrals is comprised of the functions F and K 2, (K, ~t), (K, [~). The integrability of the non-autonomous 
system (6.1) with the additional integral F also follows from the Euler-Jaeobi theorem, since the divergence of 
the right-hand side of (6.1) is equal to zero. 

It can be shown [4] that the vector fields in group SO(3), which generate rotation of the axes of the 
inertia with an angular velocity that is constant in a fixed space, will be vortex fields. In particular, all 
the vortex lines are closed and the stratification of the SO(3) group by the vortex lines are closed and 
the stratification of the SO(3) group by the vortex lines coincides with the well-known Hopf stratification. 
The corresponding factor space will be a Poisson sphere. 
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To fix our ideas we will consider the case when the vector of the moment of momentum K is directed 
along T: K =/¢y, k = I K I- Assuming the vector T to be vertical, we will introduce the Euler angles, which 
specify the orientation of the principal axes of inertia of the variable body. We must put cl = Cz = 0, 
c 3 = k in (6.3). Using Euler's kinematic formulae, for these quantities we can write the equations of 
motion in the S0(3) group 

O" = k ( l ~  I - 121 ) sin 0 sin q> cos 9 - ~l II -; cos q~ + ~21~ I sin tp 

] ~'2 COS q) COS 1~ ~'3 ! sin2tp c°s29 -t X l s ingc° sO+  - - -  (6.6) 
O" = k cos O 13 /I 12 I I sin 0 / 2 sin 0 1 3 

¥" = k(sin211 ~0 + cos 212 9/) k 1 sin tp X 2 cos 9 
I l sin 0 12 sin O 

They allow of the integral invariant 

rues(D) = ~os in  O d O d { p d w  

which is identical with the double-sided invariant Haar measure in the SO(3) group [13]. In these 
variables the vortex fields have the form O" = 0, tp' = 0, V' = IX, while the vortex lines are specified by 
the equations O, q~ = const. Since the third equation of (6.6) does not contain the angle ¥ explicitly, 
factorization with respect to the vortex lines leads to the first two equations of system (6.6). These are 
a dosed Hamiltonian system on the Poisson sphere, and the standard 2-form of the area plays the part 
of the simplectic structure. 

7. THE C L E B S C H  P O T E N T I A L S  

As shown in Section 3, the fundamental difficulty in the explicit integration of Hamilton's equations 
for a known complete integral of Lamb's equations is finding the vortex manifolds. This problem can 
be simplified considerably if the covector field u is represented in the form of a sum 

t3S I c)x + A]c~B I I igx +. . . + A~BB k I c3x (7.1) 

where S, AI, B1, •. • are certain functions o fx  and t. In view of the formulae A s  and Bs have the same 
meaning. In hydrodynamics the functions S, A1,  B1 . . . .  are usually called Clebsch potentials [14, Section 
1671. 

If the potentials A1, B I  . . . .  , Bk are independent as functions of x, we have rank (rot u) = 2k. Since 

~x: 3x i ~.~x/ ~x i ~x i ~xj  ) 

the vortex vectors coincide with the tangential vectors to the (n - 2k)-dimensional surfaces 

{x: A l ( x , t ) = a  I, B l ( x , t ) = b l  . . . . .  B k ( x , t ) = b k } ,  a ,b=cons t  

Consequently, these surfaces are the required vortex manifolds. 
By Darboux's theorem [15], the Clebsch potentials always exist. Moreover, the functions A1, B1, . . . .  

Bk can be taken as new coordinates; we will denote them by xl . . . .  , x~,. Expanding this point transfor- 
mation to a linear canonical transformation, we can write formulae (7.1) in explicit form 

~S ~S ~S ~S 
m ~ ~ ,...~ U n m ~Xn Ul ~IXI' "U2 ~--'~2 "t" Xl ..... U2k+l ~X2k+l 

and Lamb's equatiions (1.6) 
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(~S  .'~ ~ (~S  h'~ 

J (7.2) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  . . . . . . . . . . . . . . . . . . . . .  

O ( ~ t + h )  x'2k= ~ ( ~ S + h  ~ 

) =  . . . .  =0 (7.3) 

It  follows f rom (7.3) that  OS/Ot + h is a funct ion o f  the coordinates  X l , . . .  , X2k and the time t only. This 
relation extends the Hami l ton-Jacobi  equat ion and reduces  to it when k = 0. Then  (7.2) will be a closed 
canonical system of  differential equations for  the Clebsch potentials with Hamil tonian OSl3t + h. These  
observations extend the well-known results ob ta ined  by Clebsch and Stewart [14] to vortex flows of  an 
ideal fluid (when n = 3). 

We will now assume that the conditions of Theorem 1 are satisfied. It can be shown that (by (2.3)) the functions 
fl . . . . .  f~ are independent ofxz~+l . . . . .  x, and are in involution. Hence, these functions form a complete set of 
independent involutive integrals of Hamilton's equations (7.2). The explicit solution of Eqs (7.2) can be obtained 
using the construction of the complete integral of the Hamilton-Jacobi equation for the Hamiltonian 3S/3t + h. 
After this, the remaining variables X~+l . . . . .  x, are found by simple quadratures (see Section 3). 

As an example we will again consider the rotation of the axes of inertia of a variable body. Supposepo, p,~,p~, 
are canonical variables, conjugate to the Euler angles 0, q>, V- Taking the axis of the constant moment of momentum 
of the body to be vertical, we write the equation of the three-dimensional invariant surface in these variables, the 
surface being uniquely projected onto SO(3). 

We can take as the Clebsch potentials 

p¥=k, poffi0, p¢=kcosO 

S=kW, A=kcosO, B=~p 
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